ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules.

نویسندگان

  • Fujian Liu
  • Tom Willhammar
  • Liang Wang
  • Longfeng Zhu
  • Qi Sun
  • Xiangju Meng
  • Wilder Carrillo-Cabrera
  • Xiaodong Zou
  • Feng-Shou Xiao
چکیده

The relatively small and sole micropores in zeolite catalysts strongly influence the mass transfer and catalytic conversion of bulky molecules. We report here aluminosilicate zeolite ZSM-5 single crystals with b-axis-aligned mesopores, synthesized using a designed cationicamphiphilic copolymer as a mesoscale template. This sample exhibits excellent hydrothermal stability. The orientation of the mesopores was confirmed by scanning and transmission electron microscopy. More importantly, the b-axis-aligned mesoporous ZSM-5 shows much higher catalytic activities for bulky substrate conversion than conventional ZSM-5 and ZSM-5 with randomly oriented mesopores. The combination of good hydrothermal stability with high activities is important for design of novel zeolite catalysts. The b-axis-aligned mesoporous ZSM-5 reported here shows great potential for industrial applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vacuum residue upgrading by pyrolysis-catalysis procedure over mesoporous ZSM-5 zeolite

A systematic study of two-staged upgrading process of vacuum residue for light fuel production has been carried out in a semi-batch binary reactor apparatus over Y, ZSM-5 and alkaline treated ZSM-5 zeolites. Prepared catalyst samples were characterized with XRD and BET. Density and Viscosity physical properties parameters estimation, as well as GC/SIMDIS analyses were conducted on liquid produc...

متن کامل

Enhanced Hydrolysis of Cellulose in Ionic Liquid Using Mesoporous ZSM-5.

Mesoporous ZSM-5 prepared by alkaline treatment was demonstrated as an efficient catalyst for the cellulose hydrolysis in ionic liquid (IL), affording a high yield of reducing sugar. It was demonstrated that mesoporous ZSM-5 (SiO₂/Al₂O₃ = 38) had 76.2% cellulose conversion and 49.6% yield of total reducing sugar (TRS). In comparison, the conventional ZSM-5 had a mere 41.3% cellulose conversion ...

متن کامل

Effect of the Acid Properties on the Diffusion of C7 Hydrocarbons in UL-ZSM-5 Materials

1. Introduction Mesoporous UL-ZSM-5 materials have zeolitic structure in the form of nano-particles inter-grown in the walls of the amorphous wormhole-like aluminosilicate mesoporous precursor, and were shown to exhibit an intermediate acidity between the parent mesoporous precursor and ZSM-5 zeolite [1,2]. These materials combine the advantages of both, i.e., microporous crystalline zeolites (...

متن کامل

Mössbauer and Magnetic Studies of Iron-Zeolite and Iron-Cobalt Zeolite Catalysts Used in Synthesis Gas Conversion

Medium-pore (diameter ~ 6A) zeolites such as ZSM-5 and silicalite impregnated with Group VIII metals provide selective catalytic pathways for the conversion of synthesis gas to gasoline or olefins. Mössbauer and magnetic studies on these catalysts containing iron or iron plus cobalt are reported. The zeolites were impregnated with metal nitrate solutions, reduced, and carbided to yield showed F...

متن کامل

Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides

Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 10  شماره 

صفحات  -

تاریخ انتشار 2012